Network Detection and Response

Whitepaper: Self-Supervised Learning – AI For Complex Network Security

Artificial Intelligence – or AI – has become a buzzword since it emerged in the 1950s. However, all AI systems are not created equal. In our white paper, “Self-Supervised Learning – AI For Complex Network Security,” Dr. Peter Stephenson explains the different “waves” of artificial intelligence. He uses the DARPA definitions for each of these …

Whitepaper: Self-Supervised Learning – AI For Complex Network Security Read More →

Encryption = Privacy ≠ Security

For the past few years, many have been talking about the changing “threat landscape” as it pertains to the increase in zero day, insider and phishing threats. While all of these threats are on the rise, and constitute a concern, there is, perhaps, an even larger shift presenting a threat to enterprises – the shift …

Encryption = Privacy ≠ Security Read More →

New Video: Why is network data the best source for actionable data in cybersecurity?

In a recent blog post, our Head of Customer Success, Russell Gray, outlined the reasons why network data is the best source for actionable data in cybersecurity. He covered the limitations of each of the elements of a typical security stack (SIEM, Endpoint, and Firewall) and the importance of network traffic analysis (NTA) in the …

New Video: Why is network data the best source for actionable data in cybersecurity? Read More →

3 Cyberthreats Facing Federal and State Governments in 2020

Bad actors do not discriminate. Organizations across all sectors are at risk — corporations, non-profits, and increasingly, federal and state government entities. The U.S. Government Accountability Office (GAO) reported that security incidents increased by 1,300 percent from 2006 to 2015. This number is growing.

Our Top 5 Cybersecurity Insights from 2019

This year on the MixMode blog, we have covered headline stories, analyzed every pain point within network security, and shared what we believe to be some of the most innovative solutions to help you analyze network traffic, surface threats and anomalies, and stop attacks using autonomous AI.

What Trends Will Shape the Cybersecurity Industry in 2020?

In this environment, it’s no surprise that U.S. CEOs rated cybersecurity as their top external concern in a survey conducted by the Conference Board. Those worries are unlikely to fade anytime soon, but 2020 also brings fresh opportunities for proactive measures to secure sensitive information. Here’s what you need to know about the trends that are currently emerging in cybersecurity and how you can make a difference in the future of the field:

The Evolution of “Next-Generation” Manufacturing and the Need for Network Security

The new MixMode & RAVENii whitepaper, “The Evolution of ‘Next-Generation’ Manufacturing and the Need for Network Security,” is a comprehensive look at how third-wave AI is improving modern network security across connected manufacturing networks and beyond.

Generative Unsupervised Learning vs. Discriminative Clustering Technology: Which Prevents Zero-Day Attacks?

Knowing the difference between Discriminative and Generative Unsupervised Learning can tell you a lot about the effectiveness of a cybersecurity solution’s artificial intelligence, for example, whether or not that security solution can perform actions like identifying and stopping a zero-day attack.

Case Study: MixMode AI Detects Attack not Found on Threat Intel

In October, 2019 a MixMode customer experienced an incident where an external entity attacked a web server located in their DMZ, compromised it, and then pivoted internally through the DMZ to attempt access of a customer database. While the attacker was successful in penetrating the customer’s network, MixMode was able to detect the event before they were successful in penetrating the customer database.