Self-Supervised AI

The Top 5 Considerations That Should Guide Your SOC Strategy in 2021 and Beyond

It’s evident that while organizations are spending more and more on legacy cybersecurity solutions, these platforms are not holding up their end of the deal and are not able to proactively defend in a modern, non-signature attack threatscape.

Incremental Stacking of Correlative Analysis Platforms Will Ultimately Prove Ineffective and Costly

On the surface, an “incremental stacking” approach to correlative analysis platforms like SIEM, XDR and UEBA is logical. Organizations can overcome some of the inherent limitations present in their security solutions by adding a network traffic analysis (NTA), for example. Industry analysts have been touting this approach for some time now as necessary for full coverage enterprise security.

Our Top 2020 Cybersecurity Insights

The transition from office to remote environments was abrupt and one of the most defining moments that the cybersecurity industry and professionals faced in 2020. We wrote about the top issues CISOs were facing throughout the year but also doubled down on sharing insights about the evolution of next-generation SOCs, the failure of SIEM platforms as organizations are experiencing them today, and how self-supervised AI fits into the equation.

Russian Hack of U.S. Federal Agencies Shine Spotlight on SIEM Failures in Cybersecurity

In what the New York Times is calling, “One of the most sophisticated and perhaps largest hacks in more than five years,” malicious adversaries acting on behalf of a foreign government, likely Russian, broke into the email systems of multiple U.S. Federal agencies including the Treasury and Commerce Departments.

Recent Ransomware Attacks on U.S. Hospitals Highlight the Inefficiency of Rules-Based Cybersecurity Solutions

A number of recent high profile ransomware attacks on U.S. hospitals have demonstrated the urgency for organizations, municipalities, and critical services to take a proactive approach to protecting networks with a predictive AI solution.

The Case Against Using a Frankenstein Cybersecurity Platform

The cybersecurity market has, simply put, been cobbled together. A tangled web of non-integrated systems and alerts from siloed systems. Enterprises are now being forced to utilize a “Frankenstein” of stitched together tools to create a platform that might cover their security bases.

The Evolution of SIEM

It should be noted that SIEM platforms are exceptionally effective at what they initially were intended for: providing enterprise teams with a central repository of log information that would allow them to conduct search and investigation activities against machine-generated data. If this was all an enterprise cybersecurity team needed in 2020 to thwart attacks and stop bad actors from infiltrating their systems, SIEM would truly be the cybersecurity silver bullet that it claims to be.

Whitepaper: The Failed Promises of SIEM

The fundamental SIEM flaws lie in the platform’s need for continual adjustment, endless data stores, and a tendency to create an overwhelming number of false positives. When organizations instead turn to a next-generation cybersecurity solution, which predicts behavior with an unsupervised (zero tuning) system, they are poised to save on both financial and human resources.

3 Reasons Why a Rule-Based Cybersecurity Platform Will Always Fail

When it comes to advancements in cybersecurity, rule-based systems are holding the industry back. Relying on humans to constantly input and label rules in order to detect and stay ahead of threats is a bottleneck process that is setting security teams up for failure, especially with tools like SIEM, NDR, and NTA.

Data Overload Problem: Data Normalization Strategies Are Expensive

Financial institutions spend five to ten million dollars each year managing data. A recent Computer Services Inc (CSI) study reveals that most banks expect to spend up to 40 percent of their budgets on regulatory compliance cybersecurity, often adopting expensive data normalization strategies.

What is Predictive AI and How is it Being Used in Cybersecurity?

The predictive AI field of machine learning collects, analyzes, and tests data to predict future possibilities. AI’s neurological network is patterned on the human brain. But AI works on a scale that goes far beyond what is humanly possible. The top uses for predictive AI technologies to protect sensitive data and systems are in network detection and response (NDR), threat detection, and cybercrime prevention.