Unsupervised AI

What is Anomaly Detection in Cybersecurity?

Anomaly detection, the “identification of rare occurrences, items, or events of concern due to their differing characteristics from the majority of the processed data,” allows organizations to track “security errors, structural defects and even bank fraud,” according to DeepAI and described in three main forms of anomaly detection as: unsupervised, supervised and semi-supervised. Security Operations Center (SOC) analysts use each of these approaches to varying degrees of effectiveness in Cybersecurity applications.

Incremental Stacking of Correlative Analysis Platforms Will Ultimately Prove Ineffective and Costly

On the surface, an “incremental stacking” approach to correlative analysis platforms like SIEM, XDR and UEBA is logical. Organizations can overcome some of the inherent limitations present in their security solutions by adding a network traffic analysis (NTA), for example. Industry analysts have been touting this approach for some time now as necessary for full coverage enterprise security.

The Case Against Using a Frankenstein Cybersecurity Platform

The cybersecurity market has, simply put, been cobbled together. A tangled web of non-integrated systems and alerts from siloed systems. Enterprises are now being forced to utilize a “Frankenstein” of stitched together tools to create a platform that might cover their security bases.

Why The Future of Cybersecurity Needs Both Humans and AI Working Together

A recent WhiteHat Security survey revealed that more than 70 percent of respondents cited AI-based tools as contributing to more efficiency. More than 55 percent of mundane tasks have been replaced by AI, freeing up analysts for other departmental tasks.

MixMode CTO Responds to Self-Supervised AI Hopes

Yann LeCun and Yoshua Bengio were recently interviewed by VentureBeat Magazine on the topics of self-supervised learning and human-level intelligence for AI. Our CTO Dr. Igor Mezic sat down with our team to discuss some of the most interesting pieces of the LeCun article, and offer a potential solution to a search for truly self-supervised …

MixMode CTO Responds to Self-Supervised AI Hopes Read More →

Whitepaper: Self-Supervised Learning – AI For Complex Network Security

Artificial Intelligence – or AI – has become a buzzword since it emerged in the 1950s. However, all AI systems are not created equal. In our white paper, “Self-Supervised Learning – AI For Complex Network Security,” Dr. Peter Stephenson explains the different “waves” of artificial intelligence. He uses the DARPA definitions for each of these …

Whitepaper: Self-Supervised Learning – AI For Complex Network Security Read More →

Self-Supervised Learning – The Third-Wave in Cybersecurity AI

The relationship between modern cybersecurity solutions and AI has become inextricable. The unfortunate reality is that even the most talented and responsive SecOps teams are unable to manually catch every threat posed to the sprawling, hybrid networks on which today’s organizations rely. Forward-looking organizations know they need to bring AI and machine learning based security …

Self-Supervised Learning – The Third-Wave in Cybersecurity AI Read More →

New Whitepaper: How Predictive AI is Disrupting the Cybersecurity Industry

Our newest whitepaper, “How Predictive AI is Disrupting the Cybersecurity Industry,” evaluates several common SecOps issues around Network Traffic Analysis, explaining why typical solutions are wholly ineffective and represent sunk costs versus added value. We examine how self-supervised learning AI is poised to overcome the SecOps challenges of protecting today’s distributed networks.

The Many Ways Your Employees Can Get Hacked While Working From Home and How to Respond

Although it is not surprising at all that hackers are taking advantage of the global pandemic —phishing threat reports are always highest when there is some natural disaster happening— we have never before had such an unsafe environment to protect. Here are a few of the most popular malicious acts: