self-supervised AI

3 Reasons Why a Rule-Based Cybersecurity Platform Will Always Fail

When it comes to advancements in cybersecurity, rule-based systems are holding the industry back. Relying on humans to constantly input and label rules in order to detect and stay ahead of threats is a bottleneck process that is setting security teams up for failure, especially with tools like SIEM, NDR, and NTA.

Data Overload Problem: Data Normalization Strategies Are Expensive

Financial institutions spend five to ten million dollars each year managing data. A recent Computer Services Inc (CSI) study reveals that most banks expect to spend up to 40 percent of their budgets on regulatory compliance cybersecurity, often adopting expensive data normalization strategies.

What is Predictive AI and How is it Being Used in Cybersecurity?

The predictive AI field of machine learning collects, analyzes, and tests data to predict future possibilities. AI’s neurological network is patterned on the human brain. But AI works on a scale that goes far beyond what is humanly possible. The top uses for predictive AI technologies to protect sensitive data and systems are in network detection and response (NDR), threat detection, and cybercrime prevention.

Why a Platform With a Generative Baseline Matters

MixMode creates a generative baseline. Unlike the historically-based baselines provided by add-on NTA solutions, a generative baseline is predictive, real-time, and accurate. MixMode provides anomaly detection and behavioral analytics and the ability to suppress false positives and surface true positives.

Why The Future of Cybersecurity Needs Both Humans and AI Working Together

A recent WhiteHat Security survey revealed that more than 70 percent of respondents cited AI-based tools as contributing to more efficiency. More than 55 percent of mundane tasks have been replaced by AI, freeing up analysts for other departmental tasks.

MixMode CTO Responds to Self-Supervised AI Hopes

Yann LeCun and Yoshua Bengio were recently interviewed by VentureBeat Magazine on the topics of self-supervised learning and human-level intelligence for AI. Our CTO Dr. Igor Mezic sat down with our team to discuss some of the most interesting pieces of the LeCun article, and offer a potential solution to a search for truly self-supervised …

MixMode CTO Responds to Self-Supervised AI Hopes Read More →

Why Training Matters – And How Adversarial AI Takes Advantage of It

The following is an excerpt from our recently published whitepaper, “Self-Supervised Learning – AI for Complex Network Security.” The author, Dr. Peter Stephenson, is a cybersecurity and digital forensics expert having practiced in the security, forensics and digital investigation fields for over 55 years.  Section 4 – Why Training Matters – And How The Adversary …

Why Training Matters – And How Adversarial AI Takes Advantage of It Read More →